您好,欢迎来到兰博利德
二开
400-6869-840   /   010-60608020
  • First-strand cDNA Synthesis Mix(货号:F0202)
  • First-strand cDNA Synthesis Mix(货号:F0202)

    一管化、含去基因组成分、三代酶;反转录试剂盒

    • ¥1300.00
      ¥1300.00
CAS:

一管化、含去基因组成分、三代酶;反转录试剂盒



货号:F0202

储存条件:-20℃,有效期2年


产品组分

规格

All-in-One First-Strand Synthesis MasterMix

400ul

dsDNase

50ul×2

10×dsDNase Buffer

200ul

Nuclease-Free Water

1ml×2

产品简介:

    All-in-One First-Strand Synthesis MasterMix 是一款高效、便捷、减少污 染的高质量一链 cDNA 合成试剂盒,包含 M-MLV GIII Reverse Transcriptase 及 其反应 Buffer、RNA 酶抑制剂、dNTPs, Oligo(dT)20VN 和随机引物等一链 cDNA 合成所需的所有组分,仅需加入 RNA 模板和水即可开始反应。由于该试剂盒 Oligo(dT)20VN 和随机引物是预混到逆转录酶里的,该逆转录试剂盒获得的 cDNA,下游可用于 qPCR。如果做普通 PCR 实验,推荐我公司生产的货号 F0202A 。 

    从细胞中提取的 RNA 往往存在基因组 DNA 污染,如果逆转录前不将其去除, 下游 qPCR 反应时基因组 DNA 与 cDNA 会同时被扩增(尤其当引物设计在同一外 显子上时),从而影响基因表达定量准确性。本试剂盒采用 dsDNase 高效去除基 因组 DNA 污染,dsDNase 能够特异性消化双链 DNA (dsDNA 或 DNA-RNA 杂 合链中的 DNA 链),并且具有热敏感性,在逆转录温度下即可快速不可逆地失活。 与传统使用 DNaseI 去除基因组 DNA 污染的方法相比,dsDNase 无需额外加入 EDTA 进行失活,不仅节省实验时间,而且降低了对逆转录反应的抑制。 可依据基因组污染严重程度选择采用去基因组 DNA 污染与反转录分开进行 的操作方法,或者去基因组污染与反转录一步法进行的操作方法。


使用方法:

针对基因组含量低的RNA样品(推荐方案)

①于冰上配制如下反应体系:

试剂

使用量

模板 RNAa

50 ng~1ug

All-in-One First-Strand Synthesis MasterMix

4ul

dsDNase

1ul

Nuclease-Free Water

To 20ul

a. 推荐采用试剂盒提取的 RNA 作为模板

② 轻柔吸打混匀,瞬离;

③ 37℃温育2min,以去除基因组DNA污染;

④ 55℃温育15 min;

⑤ 反应结束后,85℃温育5 min以终止反应;注:若RNA中基因组DNA污染严重,可适当延长37℃温育时间至5 min。

⑥ 迅速将获得的 cDNA置于冰上,用于后续实验;或立即保存于-20°C。


针对基因组含量高 RNA 样品

1. 基因组 DNA 污染去除

①于冰上配制如下反应体系:

试剂

使用量

模板 RNAa

50 ng~1ug

10x DNase buffer

1ul

dsDNase

1ul

Nuclease-Free Water

To 10ul

a. 推荐采用试剂盒提取的RNA作为模板。

② 轻柔吸打混匀,瞬离;

③ 37℃温育2 min,以去除基因组DNA污染;

注:若RNA中基因组DNA污染严重,可适当延长37℃温育时间至5 min。

④ 65℃温育2 min,使dsDNase失活,冰上放置。

 2. 第一链cDNA合成

① 于冰上配制如下反应体系:

试剂

使用量(实验组)

“实验 1”反应产物

10 μl

All-in-One First-Strand Synthesis MasterMix

4 μl

Nuclease-Free Water

To 20 μl

② 轻柔吸打混匀,瞬离;

③ 50℃温育15min;

注:若目标RNA不含Poly(A)结构,可预先25℃温育10min。

④ 反应结束后,85℃温育5min,以终止反应;

⑤ 将获得的 cDNA 溶液置于冰上,用于后续实验。

注:cDNA溶液置于-20℃储存,建议不超过1周;置于-80℃可长期储存。


注意事项

预混液中已经包含Oligo(dT)20VN和随机引物,不仅适用于包含Poly(A)结构的真核生物mRNA,也适用于不含Poly(A)结构的原核生物RNA、真核生物rRNA和tRNA等模板,但不适用于miRNA等小RNA模板。



Photosynthesis, Phytohormone Signaling and Sugar Catabolism in the Culm Sheaths of Phyllostachys edulis;Plants;IF:4.658;DOI:10.3390/plants11212866


Opioid-induced fragile-like regulatory T cells contribute to withdrawal;Cell;IF:66.85;DOI:10.1016/j.cell.2022.12.030


Phylogeny, transcriptional profile, and auxin-induced phosphorylation  modification characteristics of conserved PIN proteins in Moso bamboo  (Phyllostachys edulis);International Journal of Biological Macromolecules;IF:8.03; DOI:10.1016/j.ijbiomac.2023.123671 


MicroRNA‐encoded regulatory peptides modulate cadmium tolerance and accumulation in rice;Plant Cell  Environment;IF:7.3003; DOI:10.1111/pce.14819


通络开痹片的消炎镇痛作用及机制研究,金藤清痹颗粒治疗急性痛风性关节炎的作用机制研究;中华中医药杂志 IF=2.4;中草药 IF:4.694;


The antiviral effects of TRIM23 and TRIM32 proteins in rainbow trout (Oncorhynchusmykiss);Developmental and Comparative Immunology;IF:2.9;DOI:10.1016/j.dci.2023.105097


Bioinformatics-led discovery of liver-specific genes and macrophage infiltration in a cute liver injury;Frontiers in Immunology;IF:7.6; DOI: 10.3389/fimmu.2023.1287136


ANGPTL8 promotes adipogenic differentiation of mesenchymal stem cells: potential role in ectopic lipid deposition;Frontiers in Endocrinology;IF:5.2;DOI:10.3389/fendo.2022.927763


Integrative analysis of exogenous auxin mediated plant height regulation inMoso bamboo (Phyllostachys edulis);Industrial Crops & Products;IF:6.449;DOI:10.1016/j.indcrop.2023.116852


Identification and Characterization of Peptides from Bovine Collagen Hydrolysates that Promote Myogenic Cell Proliferation;JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY;IF:5.895;DOI:10.1021/acs.jafc.2c08929


Deciphering the regulatory role of PheSnRK genes in Moso bamboo: insights into hormonal, energy, and stress responses;BMC Genomics;IF:4.4;DOI:10.1186/s12864-024-10176-7


Chlorogenic acid/carboxymethyl chitosan nanoparticle-assisted biomultifunctional hyaluronic acid-based hydrogel scaffolds for burn skin repair;International Journal of Biological Macromolecules;IF:7.7;DOI:10.1016/j.ijbiomac.2024.133528


Decellularized Amnion Membrane Triggers Macrophage Polarization for Desired Host Immune Response;Advanced Healthcare Materials;IF:10;DOI:10.1002/adhm.202402139


Amplifying protection against acute lung injury: Targeting both inflammasome and cGAS-STING pathway by Lonicerae Japonicae FlosForsythiae Fructus drug pair;Chinese Herbal Medicines;IF:4.7;DOI:10.1016/j.chmed.2024.04.001


Molecular mechanism of TRIM32 in antiviral immunity in rainbow trout (Oncorhynchus mykiss);Fish & Shellfish Immunology;IF:4.1;DOI:10.1016/j.fsi.2024.109765


Molecular mechanism of infectious hematopoietic necrosis G protein N-glycosylation escaping from rainbow trout immunity;Aquaculture;IF:3.9;DOI:10.1016/j.aquaculture.2024.741635


Transcriptome Sequencing-Based Screening of Key Melatonin-Related Genes in Ischemic Stroke ;IJMS; IF:4.9; 

DOI:10.3390/ijms252111620


Integrative analysis of the transcriptome, targeted metabolome, and anatomical observation provides insights into the brassinosteroids-mediated seasonal variation of cambial activity in Chinese fir;Industrial Crops & Products; IF:5.6;DOI:10.1016/j.indcrop.2024.119977


Identification and characterization of circRNAs associated with cell wall formation in moso bamboo (Phyllostachys edulis) based on multi-omics data; Industrial Crops and Products; IF: 5.6; 

DOI:10.1016/j.indcrop.2024.120240


In silico analysis of trehalose biosynthesis genes provides clues to reveal its roles in Avicennia marina adaptation to tidal submergence;Plant Physiology and Biochemistry;IF:6.1;DOI:10.1016/j.plaphy.2024.109420


Hepatotoxicity of Phytolacca acinosa Roxb mediated by phytolaccagenin 

via ferroptosis/PPAR/P53/arachidonic acid metabolism;phytomedicine;IF:6.7;DOI:10.1016/j.phymed.2025.156433



400-6869-840
客服电话
010-6060-8020
联系电话
PRODUCT CENTER
产品中心

您好,欢迎访问北京兰博利德官网